Evaluating Peers' Arguments as the Catalyst for Learning in an Introduction to Proofs Course

### Sarah K. Bleiler Middle Tennessee State University



- Foundations of Higher Mathematics
- 3-credit "bridge" course between lower- and upper-division undergraduate mathematics courses
- The language of mathematics, set theory and proof, relations and functions, number systems, mathematical structures.
- 27 students
- Primarily sophomore and junior mathematics majors (including PSTs)



### • Undergraduate students:

- See the writing of proofs as a specific procedure that is to be replicated based on the text or instructor (e.g., Stylianou, Blanton, & Knuth, 2009).
- View the mathematics instructor as the final / only arbiter for validating their mathematical argument (e.g., Harel & Sowder, 2007).

#### • Mathematicians:

• *Negotiate* the validity of presented arguments within their community of practice (e.g., Inglis & Alcock, 2012; Inglis, Mejia-Ramos, Weber, & Alcock, 2013; Weber, 2008).

### • Driving Question:

• How can I move my students away from the view of the instructor as the final/only arbiter for validation of mathematical proof and toward the view that they possess the tools and sense-making capabilities to successfully construct and validate mathematical arguments?

### **The Problem**

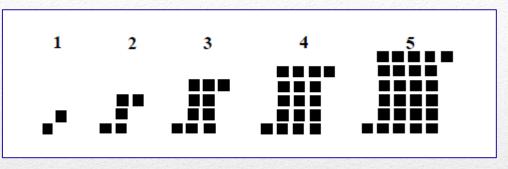
- Learner-generated examples (Watson & Mason, 2005)
- Small-group learning (Kyndt, Raes, Lismont, Timmers, Cascallar, & Dochy, 2013; Springer, Stanne, & Donovan, 1999)

# Research-Based Course Design

| Sunday                      | Monday                    | Tuesday                                                                                | Wednesday | Thursday                                                   | Friday                                               | Saturday |
|-----------------------------|---------------------------|----------------------------------------------------------------------------------------|-----------|------------------------------------------------------------|------------------------------------------------------|----------|
|                             |                           | Students work individually to make sense of "new" mathematics in assigned problem set. |           |                                                            | Students<br>electronically<br>submit<br>problem set. |          |
| work, identi<br>misconcepti | ons, and<br>ivities based | In-class<br>activity.                                                                  |           | In-class<br>activity.<br>Assessment<br>sheets<br>returned. |                                                      |          |
|                             |                           | Students<br>submit<br>revision.                                                        |           |                                                            |                                                      |          |

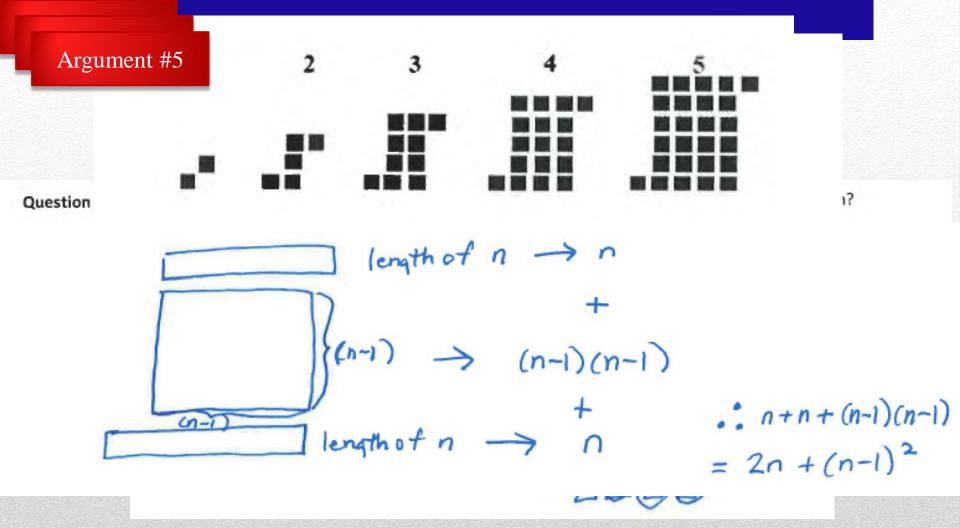
# **Typical Instructional Schedule**

• Question 1. Consider the pattern below. How many square tiles would there be in the eighth step of this pattern?



- Question 2. Write an expression for the total number of square tiles in the figure at an arbitrary step (*n*) of the pattern.
- Question 3. Prove that your expression is a valid representation of the number of tiles at step *n* of the pattern. You may use drawings, words, numbers, and/or symbols for your proof.

### Week 1: Developing a Course Rubric for Proof-Writing



### Instructional Goal: Multiple Ways to "View" the Generalization of a Pattern



In each step of the equation, we are given (n+1) rows and (n+1) columns. From the first and last columns, we are missing n number of squares. From this, we get the equation: T = (n+1)(n+1) - 2n

This means that for each step, we get a square made up of (n+1) rows and columns missing a unit squares from each Side of the bigger square, which is representative of the pattern shown above. By simplifying the equation we can see  $T = (n+1)(n+1) - 2n = n^{2} + 2n + 1 - 2n - n^{2} + 2n - 2n + 1 = n^{2} + 1.$ Therefore, as long as the pattern holds, the equation can be represented by: T=n2+1.

| Proof<br>Criterion | Clear identification<br>of parameters,<br>constraints, and<br>assumptions                                                                                                                                                                                                                                                                                                                             | Generalization                                                                                                                                                                                                                                                                                                                                                                  | Chain of Evidence,<br>Structure, and Clarity                                                                                                                                                                                                                                                                                                                                                                                                                                    | Validity/Cor<br>rectness                             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Descriptors        | <ul> <li>a1. Define the</li> <li>statement of the</li> <li>statement of the</li> <li>problem and the</li> <li>givens.</li> <li>a2. Define all</li> <li>variables.</li> <li>a3. Explain the</li> <li>boundaries of the</li> <li>solution (e.g., which</li> <li>numbers or number</li> <li>systems for which the</li> <li>proof works).</li> <li>a4. Make explicit all</li> <li>assumptions.</li> </ul> | <ul> <li>b1. Proof should</li> <li>apply to all</li> <li>aituations/values</li> <li>within the specified</li> <li>parameters.</li> <li>b2. Answer the</li> <li>question "why?"</li> <li>b3. The conclusion</li> <li>should be stated in</li> <li>general terms.</li> <li>b4. Make</li> <li>connection between</li> <li>concrete examples</li> <li>and generalization</li> </ul> | <ul> <li>c1. Demonstrate reasoning that</li> <li>follows a logical sequence.</li> <li>c2. Argument is clear,</li> <li>complete, concise, and</li> <li>simplified.</li> <li>c3. Consider including</li> <li>elements to clarify argument,</li> <li>such as generalized visual</li> <li>representations, or concrete</li> <li>examples.</li> <li>c4. Make explicit use of</li> <li>definitions to aid in the</li> <li>precision and clarity of your</li> <li>argument.</li> </ul> | d1. Proof<br>conclusion is<br>valid/correct/<br>true |

### **Student-Developed Course Rubric for Proof Writing**



"It has given me a new look at proof. When I had taken the class the first time I was only exposed to the formal way and no other way of writing a proof. This has helped me see that there is not just one way to write a proof."

"I have also realized that there is not only one equation for every problem. What makes a good proof is being able to explain how one got the equation to work and why it works."

## **Student Reflections**



"This has impacted my understanding of a proof by forcing me to think about what it takes to truly prove something. Before doing this engagement, I thought I would be able to prove something was true by showing an example of the solution working. Now I know it takes much more than examples to make a valid proof."

# **Student Reflections**



"Sometimes words and lengthy descriptions can be improved or even replaced with well-designed visual aides. The focus on simplicity has also helped me understand the fine line between a well-written and structured chain of evidence and a poorly-written one."

# **Student Reflections**

Using learner-generated examples and small-group learning....

Helped students think about alternative approaches to "start" a proof.

♦ Motivated students to work from the definitions and given assumptions.

Motivated students to be able to defend solutions using a clear and complete chain of evidence.

*(\*)* Encouraged students to take ownership of their learning.



- I would like to thank my colleagues who have been instrumental in helping me develop the ideas guiding my course design:
  - Justin D. Boyle, University of New Mexico
  - Yi-Yin (Winnie) Ko, Indiana State University
  - Sean P. Yee, California State University Fullerton
- My contact information:
  - Sarah.Bleiler@mtsu.edu

### **Thank You!**

- Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), *Second handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics* (pp. 805-842). Charlotte, NC: Information Age Publishing.
- Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. *Journal for Research in Mathematics Education*, 43(4), 358-390.
- Inglis, M., Mejia-Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians' different standards when evaluating elementary proofs. *Topics in Cognitive Science*, 5(2), 270-282.
- Kyndt, E., Raes, E., Lismont, B., Timmers, F., Cascallar, E., & Dochy, F. (2013). A metaanalysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? *Educational Research Review*, *10*, 133-149.
- Springer, L., Stanne, M. E., & Donovan, S. S. (1999). Effects of small-group learning on undergraduates in science, mathematics, engineering, and technology: A meta-analysis. *Review of Educational Research*, 69(1), 21-51.
- Stylianou, D. A., Blanton, M. L., & Knuth, E. J. (2009). Introduction. In D. A. Stylianou,, M. L. Blanton, & E. J. Knuth (Eds.), *Teaching and learning proof across the grades: A K-16 perspective* (pp. 1-12). New York, NY: Routledge.
- Taylor, R. (2007). Introduction to proof, *Journal of Inquiry-Based Learning in Mathematics, No. 4.* [Course notes modified for use in my class.]
- Watson, A., & Mason, J. (2005). *Mathematics as a constructive activity: Learners generating examples*. Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc.
- Weber, K. (2008). How mathematicians determine if an argument is a valid proof. *Journal* for Research in Mathematics Education, 39, 431-459.

### References