Random Variables and Discrete Probability Distributions

Random Variables and Discrete Probability Distributions

•What is a random variable?

•Are there different types of random variables?

•What is a discrete probability distribution?

- A random variable is a variable that takes on values associated with outcomes of a probability experiment.
 - The values of a random variable are numerical values/measures that are either discrete or continuous.

- A random variable is a variable that takes on values associated with outcomes of a probability experiment.
 - Random variables are denoted using letters such as X.

• A discrete random variable has either a finite number of values or a countable number of values.

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The number displayed on the top face of a fair die
 - The prizes associated with a raffle

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The number of times a fair coin lands tail side up when the coin is tossed five times

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The sum of the numbers displayed on the top faces of a pair of fair dice

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The number of customers waiting in line to be served at a Starbucks

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The amounts, in dollars, of the prizes associated with a winning Massachusetts Daily Number lottery ticket

- A discrete random variable has either a finite number of values or a countable number of values.
- Examples:
 - The number of French Fries in a small order of French Fries purchased at Burger King

• A continuous random variable has an infinite number of values.

- A continuous random variable has an infinite number of values.
- Examples:
 - The amount of time, in minutes, it takes a student to complete a one-hour examination

- A continuous random variable has an infinite number of values.
- Examples:
 - The amount of water, in ounces, in an 8-ounce bottle of Poland Springs bottled water

- A continuous random variable has an infinite number of values.
- Examples:
 - The amount of water, in gallons, that flows over Niagara Falls during one hour

- A continuous random variable has an infinite number of values.
- Examples:
 - The weight, in ounces, of a Big Mac sold at McDonald's

- A continuous random variable has an infinite number of values.
- Examples:
 - The weight, in pounds, for the amount of red seedless grapes that you buy while shopping at Stop & Shop

• A probability distribution for a discrete random variable X is a table, graph, or formula that specifies the probability associated with each possible value of the random variable.

 Since probabilities are between zero and one, inclusive, the values of the probabilities associated with a discrete random variable must be between zero and one, inclusive.

- Since probabilities are between zero and one, inclusive, the values of the probabilities associated with a discrete random variable must be between zero and one, inclusive.
 - Letting P(x) denote the probability that the value of the random variable X is equal to x, these probabilities must be such that 0 ≤ P(x) ≤ 1

- Since probabilities are between zero and one, inclusive, the values of the probabilities associated with a discrete random variable must be between zero and one, inclusive.
 - Alternate: Letting P(X = x) denote the probability that the value of the random variable X is equal to x, these probabilities must be such that 0 ≤ P(X = x) ≤ 1

- Since all the probabilities associated with the values of the random variable are specified by the probability distribution, the sum of these probabilities must be one.
 - Letting P(x) denote the probability that the value of the random variable X is equal to x, these probabilities must be such
 Σ P(x) = 1

- Since all the probabilities associated with the values of the random variable are specified by the probability distribution, the sum of these probabilities must be one.
 - Alternate: Letting P(X = x) denote the probability that the value of the random variable X is equal to x, these probabilities must be such

$$\sum P(X = x) = 1$$

- Requirements for a probability distribution for a discrete random variable
 - For P(x) the probability that the value of the random variable X is equal to x, the following must be true:
 - $_{\circ}$ 0 \leq P(x) \leq 1
 - $\odot \sum P(x) = 1$

- Alternate Notation Requirements for a probability distribution for a discrete random variable
 - For P(X = x) the probability that the value of the random variable X is equal to x, the following must be true:

$$0 \leq P(X = x) \leq 1$$
$$\sum P(X = x) = 1$$

 It would be best to use a table to represent the probability distribution for the toss of a fair coin.

 First, we must determine the possible outcomes for tossing a fair coin.

- First, we must determine the possible outcomes for tossing a fair coin.
- The possible outcomes are for the coin to land head side up or tail side up.

- Let Heads denote the coin landing head side up.
- Let Tails denote the coin landing tail side up.

 Second, we must determine the probability associated with each outcome.

- Second, we must determine the probability associated with each outcome.
- The probability that the coin lands head side up is $\frac{1}{2}$.
- The probability that the coin lands tail side up is $\frac{1}{2}$.

- P(Heads) = $\frac{1}{2}$
- P(Tails) = $\frac{1}{2}$
- Using the alternate notation

• $P(X = Tails) = \frac{1}{2}$

- Finally, we set up the table. We create this table in a similar manner to the way in which we create frequency distributions and relative frequency distributions.
 - Put the values of the variable in the first column

- Finally, we set up the table. We create this table in a similar manner to the way in which we create frequency distributions and relative frequency distributions.
 - Put the corresponding probabilities in the second column

×	P(x)
Heads	12
Tails	<u>1</u>
xP(x)Heads $\frac{1}{2}$ Tails $\frac{1}{2}$

Don't forget the title! Otherwise, the reader will not understand what your table represents.

Probability Distribution for the Toss of a Fair Coin

×	P(x)
Heads	12
Tails	<u>1</u>

Using the alternate notation

Probability Distribution for the Toss of a Fair Coin

×	P(X = x)
Heads	12
Tails	12

- If we change the point of view from Heads and Tails to the number of Heads then the values of the random variable are numerical.
 - Heads becomes 1 since there is one Head.
 - Tails becomes 0 since there are zero Heads.

Using a different point of view -

Probability Distribution for the Number of Heads for the Toss of a Fair Coin

×	P(x)
1	12
0	<u>1</u> 2

Using a different point of view -

Probability Distribution for the Number of Heads for the Toss of a Fair Coin

×	P(X = x)
1	<u>1</u> 2
0	<u>1</u>

• First, we must determine the values of the random variable.

- First, we must determine the values of the random variable.
 - That is, what are the possible outcomes for the roll of a fair die?

- That is, what are the possible outcomes for the roll of a fair die?
 - Let the outcomes be represented by the number of dots displayed on the top face of the die when it lands.

- The possible outcomes for the roll of a fair die are
 - **1**
 - 2
 - 3 • 4
 - 5 - 6

 Next, we must determine the associated probability for each value of the random variable.

- Next, we must determine the associated probability for each value of the random variable.
 - That is, we must determine the associated probability for each outcome.

 For this experiment, the associated probability for each outcome is 1/6.

 Finally, we create the table. Again, this table is set up in a similar manner to the frequency distribution and the relative frequency distribution tables.

- Finally, we create the table. Again, this table is set up in a similar manner to the frequency distribution and the relative frequency distribution tables.
 - Values of variable in first column
 - Associated probabilities in second column

×	P(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

×	P(x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Don't forget the title! Otherwise, the reader will not understand what your table represents.

Probability Distribution for the Roll of a Fair Die

×	P(x)	
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	

Using the alternate notation

Probability Distribution for the Roll of a Fair Die

×	P(X = x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

What are those???

- Requirements for a probability distribution for a discrete random variable
 - For P(x) the probability that the value of the random variable X is equal to x, the following must be true:
 - \circ 0 \leq P(x) \leq 1
 - $\odot \sum P(x) = 1$

If P(x) is not such that 0 ≤ P(x) ≤ 1 <u>and</u>
 ∑ P(x) = 1 then your table, graph, or formula does not represent a probability distribution for a discrete random variable.

 If P(x) is not such that 0 ≤ P(x) ≤ 1 <u>and</u>
 ∑ P(x) = 1 then your table, graph, or formula does not represent a probability distribution for a discrete random variable.

Carefully notice the "and"!! Both conditions must be met!!!

Alternate Notation –
 If P(X = x) is not such that
 0 ≤ P(X = x) ≤ 1 and ∑ P(X = x) = 1 then
 your table, graph, or formula does not
 represent a probability distribution for a
 discrete random variable.

 Alternate Notation – If P(X = x) is not such that 0 ≤ P(X = x) ≤ 1 and ∑ P(X = x) = 1 then your table, graph, or formula does not represent a probability distribution for a discrete random variable.

Carefully notice the "and"!! Both conditions must be met!!!

Check each for yourself!

Check each for yourself!

For each example, the individual probabilities are between zero and one, inclusive, <u>and</u> the sum of the probabilities is one.

Notation

- For clarity, we will use the alternate notation in the rest of these slides.
 - Reminder: P(X = x) denotes the probability that the value of the random variable X is equal to x

Does the table below represent a probability distribution for a discrete random variable?

×	P(X = x)
Penny	0.13
Nickel	0.22
Dime	0.38
Quarter	-0.29
Dollar	0.56

Does the table below represent a probability distribution for a discrete random variable?

×	P(X = x)	NO! Although the
Penny	0.13	sum of the values in the P(X = x) column
Nickel	0.22	is one, none of these
Dime	0.38	values can be negative if these
Quarter	-0.29	values are to be
Dollar	0.56	prodadiimes.

Does the table below represent a probability distribution for a discrete random variable?

×	P(X = x)	NO! Although the
Penny	0.13	sum of the values in the P(X = x) column
Nickel	0.22	is one, none of these
Dime	0.38	values can be negative if these
Quarter	-0.29	values are to be
Dollar	0.56	prodadilities.

Note: No title is provided since this is a generic example.

Does the table below represent a probability distribution for a discrete random variable?

×	P(X = x)	
-2	0.25	
1	0.3	
3	0.4	
5	0.05	
×	P(X = x)	YES! The values in the P(X = x) column are each between zero and one, inclusive and the sum of these values is
----	----------	---
-2	0.25	
1	0.3	
3	0.4	one.

5 0.05

×	P(X = x)	YES! The values in the P(X = x) column
-2	0.25	are each between zero and one,
1	0.3	<i>inclusive</i> and the sum of these values is
3	0.4	one. Note: There are no
5	0.05	limitations on the x values.

Note: No title is provided since this is a generic example.

×	P(X = x)
2	0.23
4	0.3
6	0.4
8	0.05
10	0.01

×	P(X = x)	NO! Although the
2	0.23	values in the P(X = x) column are each
4	0.3	between zero and one,
6	0.4	<i>inclusive</i> , the sum of these values is NOT
8	0.05	one.

10 0.01

Note: No title is provided since this is a generic example.

Probability Histogram

• We construct a probability histogram in the same way in which we construct a frequency histogram or a relative frequency histogram except with probability on the vertical axis rather than frequency or relative frequency, respectively.

Probability Histogram

 As with a frequency histogram or a relative frequency histogram, the axes must be appropriately labeled and there must be an appropriate title.

- A raffle has four prizes, a first prize of \$500, a second prize of \$200, two third prizes of \$50, and three fourth prizes of \$10. Suppose 1000 tickets are sold for \$1 each.
- Create the discrete probability distribution for someone who purchases one ticket for this raffle.

- Although there are four prizes, there are five possible outcomes
 - Win First prize of \$500
 - Win Second prize of \$200
 - Win Third prize of \$50
 - Win Fourth prize of \$10
 - Not winning one of these prizes, "winning" \$0

 Since not winning one of the prizes cannot be named as a "prize", it would be best to represent the outcomes as using the value, in dollars, for each prize.

- Since not winning one of the prizes cannot be named as a "prize", it would be best to represent the outcomes as using the value, in dollars, for each prize.
 - The outcomes are \$500, \$200, \$50, \$10, and \$0.

 Next, we determine the probability that each outcome occurs.

- Next, we determine the probability that each outcome occurs.
 - P(X = \$500) = 1/1000 since there is one prize of \$500 and one thousand tickets were sold.

- Next, we determine the probability that each outcome occurs.
 - P(X = \$200) = 1/1000 since there is one prize of \$200 and one thousand tickets were sold.

- Next, we determine the probability that each outcome occurs.
 - P(X = \$50) = 2/1000 since there are two prizes of \$50 and one thousand tickets were sold.

- Next, we determine the probability that each outcome occurs.
 - That is, P(X = \$50) = 1/500 since there are two prizes of \$50 and one thousand tickets were sold.

- Next, we determine the probability that each outcome occurs.
 - P(X = \$10) = 3/1000 since there are three prizes of \$10 and one thousand tickets were sold.

- Next, we determine the probability that each outcome occurs.
 - P(X = \$0) = 993/1000 since there are 993 prizes of \$0, that is, there are 993 non-winning tickets, and one thousand tickets were sold.

 Finally, we compile the information into a table

 Finally, we compile the information into a table that includes a meaningful title.

Probability Distribution for the Prizes, in dollars, that a Person who Buys One \$1-Raffle Ticket could win in a Raffle for which One-Thousand Tickets are Sold

×	P(X = x)
500	1/1000
200	1/1000
50	1/500
10	3/1000
0	993/1000

 In our previous analysis, we focused on the prizes for the raffle.

Point of view used - Prize

• Thus, our probability distribution was for the *prizes* for the raffle.

• We do not need to focus on the prizes.

 We could focus on the amount of money that one wins.

- Winnings for a raffle are not the same as the prizes for the raffle.
 - Winnings are what you get in excess of what you had before you purchased the ticket.

- Winnings for a raffle are not the same as the prizes for the raffle.
 - Winnings are what you get in excess of what you had before you purchased the ticket.
- Let us consider the *winnings*

Alternate point of view – Winnings

 Alternate point of view – Winnings
 If you win first prize and you paid \$1 for your ticket, you actually win \$499

Amount of Winnings = Amount of Prize - Ticket Price First Prize Winnings = \$500 - \$1

- Alternate point of view Winnings
 - If you win second prize and you paid \$1 for your ticket, you actually win \$199

• Amount of Winnings

- = Amount of Prize Ticket Price
- Second Prize Winnings = \$200 \$1

- Alternate point of view Winnings
 - If you win third prize and you paid
 \$1 for your ticket, you actually win
 \$49

• Amount of Winnings

- = Amount of Prize Ticket Price
- Third Prize Winnings = \$50 \$1

- Alternate point of view Winnings
 - If you win fourth prize and you paid
 \$1 for your ticket, you actually win
 \$9

• Amount of Winnings

- = Amount of Prize Ticket Price
- Fourth Prize Winnings = \$10 \$1

- Alternate point of view Winnings
 - If you do not win a prize and you paid \$1 for your ticket, you actually win -\$1

 Combining this information into a table with an appropriate and meaningful title, we obtain the probability distribution for this raffle from a point of view of the winnings for someone who purchases a ticket.

Probability Distribution for the Winnings, in dollars, for a Person who Buys One \$1-Raffle Ticket for a Raffle for which One-Thousand Tickets are Sold

×	P(X = x)
499	1/1000
199	1/1000
49	1/500
9	3/1000
-1	993/1000

- Note: The point of view does not affect the probabilities or the number of outcomes.
 - The point of view only affects how the values of the random variable are represented.

 Note: The random variables for this example (based on the point of view) are related but not the same since

Prize ≠ Winnings.

 Did you notice that our probability distributions for each point of view meet the requirements for discrete probability distributions?
Raffle Example

- Did you notice that our probability distributions for each point of view meet the requirements for discrete probability distributions?
- They do! Check them for yourself!

Raffle Example

- Did you notice that our probability distributions for each point of view meet the requirements for discrete probability distributions?
- For each, our values of P(X = x) are such that
 - $0 \leq P(X = x) \leq 1$ and $\sum P(X = x) = 1$

 The mean of a discrete random variable X, denoted µ_X, is determined using the formula

$$\mu_{X} = \sum [x \cdot P(X = x)].$$

 The mean of a discrete random variable X, denoted µ_X, is determined using the formula

$$\mu_{X} = \sum [x \cdot P(X = x)].$$

 That is, to determine µ_X, we take the sum of the product of the values of the random variable, x, and their corresponding probabilities, P(X = x).

 The mean of a discrete random variable X, denoted µ_X, also referred to as the expected value.

 The mean of a discrete random variable X, denoted µ_X, also referred to as the expected value.

Why?

- The mean of a discrete random variable X, denoted µ_X, also referred to as the expected value.
- The mean, or expected value, also denoted E(X), is that value that we would expect the random variable to attain in the long run.

- The mean of a discrete random variable X, denoted µ_X, also referred to as the expected value.
- We can think of µ_X = E(X) as the mean value of a very large (infinite, if we could) number of repetitions of the experiment in which the values of X occur in proportions equivalent to the probabilities of X.

- We can think of $\mu_X = E(X)$ as the average value of the random variable that we would expect to obtain if we perform the experiment repeatedly.
 - Letting x_k represent the outcome of the kth repetition of the experiment, [x₁ + x₂ + ... + x_k + ... + x_n]/n gets closer to µ_X = E(X) as the number of repetitions of the experiment, n, increases in value.

- First, we must determine the sample space for the experiment.
 - HH
 - HT
 - TH
 - TT

- Next, we count the outcomes.
 - The outcome two Heads, HH, occurs once.
 - The outcome one Head, HT and TH, occurs twice.
 - The outcome zero Heads, TT, occurs once.

Next, we create the probability distribution.

Probability Distribution for the Toss of Two Fair Coins

×	P(X = x)
0	<u>1</u> 4
1	<u>1</u> 2
2	<u>1</u>

 Finally, having determined the probability distribution, we can calculate the expected number of Heads, that is, the expected value for the number of Heads.

$$\mu_X = E(X) = 0 \cdot (\frac{1}{4}) + 1 \cdot (\frac{1}{2}) + 2 \cdot (\frac{1}{4})$$
$$= \frac{1}{2} + \frac{1}{2}$$
$$= 1$$

•
$$\mu_X = E(X) = 0 \cdot (\frac{1}{4}) + 1 \cdot (\frac{1}{2}) + 2 \cdot (\frac{1}{4})$$

= $\frac{1}{2} + \frac{1}{2}$
= 1

 We can expect one Head if we toss two fair coins.

 We have already created the probability distribution for the roll of a fair die.

Probability Distribution for the Roll of a Fair Die

×	P(X = x)	
1	1/6	
2	1/6	
3	1/6	
4	1/6	
5	1/6	
6	1/6	

 So, we calculate the expected value by taking the sum of the products of the values of the random variable and their corresponding probabilities.

•
$$\mu_X = E(X) = 1(1/6) + 2(1/6) + 3(1/6)$$

+ 4(1/6) + 5(1/6) + 6(1/6)
= (1 + 2 + 3 + 4 + 5 + 6)/6
= 21/6
= 3.5

- $\mu_X = E(X) = 1(1/6) + 2(1/6) + 3(1/6)$ + 4(1/6) + 5(1/6) + 6(1/6) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 21/6 = 3.5
- Notice that the expected value is not one of the possible outcomes for the random variable.

• We have already created the probability distribution for our raffle.

Probability Distribution for the Prizes, in dollars, that a Person who Buys One \$1-Raffle Ticket could win in a Raffle for which One-Thousand Tickets are Sold

×	P(X = x)
500	1/1000
200	1/1000
50	1/500
10	3/1000
0	993/1000

 Using our probability distribution, we can calculate the expected prize for someone purchasing one ticket for our raffle.

- $\mu_X = E(X) = 500(1/1000) + 200(1/1000) + 50(2/1000) + 10(3/1000) + 0(993/1000) + 0(993/1000)$
 - = (500 + 200 + 100 + 30)/1000
 - = 830/1000

= 0.83

 The expected prize for someone buying a ticket for our raffle is \$0.83.

• We have already created the probability distribution for our raffle.

Probability Distribution for the Winnings, in dollars, for a Person who Buys One \$1-Raffle Ticket for a Raffle for which One-Thousand Tickets are Sold

×	P(X = ×)
499	1/1000
199	1/1000
49	1/500
9	3/1000
-1	993/1000

 Using our probability distribution, we can calculate the expected winnings for someone purchasing one ticket for our raffle.

- $\mu_X = E(X) = 499(1/1000) + 199(1/1000) + 49(2/1000) + 9(3/1000) + (-1)(993/1000) + (-1)(993/1000) = (499 + 199 + 98$
 - + 27 993)/1000

 The expected winnings for someone buying a ticket for our raffle is -\$0.17.

- $\mu_X = E(X) = 499(1/1000) + 199(1/1000) + 49(2/1000) + 9(3/1000) + (-1)(993/1000) + (-1)(993/1000) = (499 + 199 + 98$
 - + 27 993)/1000
 - = -170/1000 = -0.17
- The expected winnings for someone buying a ticket for our raffle is -\$0.17. WHAT?

- $\mu_X = E(X) = 499(1/1000) + 199(1/1000) + 49(2/1000) + 9(3/1000) + (-1)(993/1000) = (499 + 199 + 98 + 27 993)/1000$
 - = -170/1000 = -0.17
- Someone buying a ticket for our raffle can expect to lose \$0.17.

For our raffle example, can we use our expected prize calculation to determine the expected winnings?
• Yes, we can.

 Since we know that the expected prize for someone buying a ticket for our raffle is \$0.83, all we have to do is take into account her/his having paid \$1 for the ticket.

- Since we know that the expected prize for someone buying a ticket for our raffle is \$0.83, all we have to do is take into account her/his having paid \$1 for the ticket.
 - Recall:

Winnings = Value of Prize - Cost of Ticket

- Since we know that the expected prize for someone buying a ticket for our raffle is \$0.83, all we have to do is take into account her/his having paid \$1 for the ticket.
- Expected Winnings = Expected Prize \$1
 = 0.83 1
 = -0.17

- Expected Winnings = Expected Prize \$1= 0.83 - 1 = -0.17
- Again, we find that someone buying a ticket for our raffle can expect to lose \$0.17.

Variance and Standard Deviation for a Discrete Random Variable

Variance and Standard Deviation for a Discrete Random Variable

The variance of a discrete random variable X, denoted σ²_X = Var(X), is determined using the formula

$$\sigma_X^2 = Var(X) = \sum [(x - \mu_X)^2 \cdot P(X = x)] \\ = \sum [x^2 \cdot P(X = x)] - (\mu_X)^2$$

• The standard deviation of a discrete random variable X, denoted σ_X , is the square root of the variance.

 We have already created the probability distribution for the roll of a fair die.

Probability Distribution for the Roll of a Fair Die

×	P(X = x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

- We have already calculated the expected value.
- Recall:
 - $\mu_X = E(X) = 1(1/6) + 2(1/6) + 3(1/6)$ + 4(1/6) + 5(1/6) + 6(1/6) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 21/6 = 3.5

- So, we can calculate the variance,
 - $\sigma^2_{\chi} = (1-3.5)^2(1/6) + (2-3.5)^2(1/6)$ + $(3-3.5)^2(1/6) + (4-3.5)^2(1/6)$ + $(5-3.5)^2(1/6) + (6-3.5)^2(1/6)$ = $(-2.5)^2(1/6) + (-1.5)^2(1/6)$ + $(-0.5)^2(1/6) + (0.5)^2(1/6)$ + $(1.5)^2(1/6) + (2.5)^2(1/6)$ = 2(6.25 + 2.25 + 0.25)/6
 - = 35/12

 Then, taking the square root of the variance, we determine the standard deviation,

 Or, using the other variance formula, • $\sigma^2_{x} = [1^2(1/6) + 2^2(1/6) + 3^2(1/6)]$ $+ 4^{2}(1/6) + 5^{2}(1/6)$ $+ 6^{2}(1/6)] - (3.5)^{2}$ = [(1 + 4 + 9 + 16)]+ 25 + 36)/6] - 49/4 = 91/6 - 49/4 = (182 - 147)/12 = 35/12

Again, the standard deviation is

 We have already created the probability distribution for the toss of two fair coins.

Probability Distribution for the Toss of Two Fair Coins

×	P(X = x)
0	<u>1</u> 4
1	<u>1</u> 2
2	<u>1</u>

- We have already determined the expected number of heads for the toss of two fair coins.
- Recall:

•
$$\mu_X = E(X) = 0 \cdot (\frac{1}{4}) + 1 \cdot (\frac{1}{2}) + 2 \cdot (\frac{1}{4})$$

= $\frac{1}{2} + \frac{1}{2}$
= 1

So, we can calculate the standard deviation.

•
$$\sigma_{\chi}^{2} = (0-1)^{2} \cdot (\frac{1}{4}) + (1-1)^{2} \cdot (\frac{1}{2}) + (2-1)^{2} \cdot (\frac{1}{4})$$

 $= \frac{1}{4} + \frac{1}{4}$
 $= \frac{1}{2}$
• $\sigma_{\chi} = \int (\frac{1}{2}) \approx 0.707$ Heads

Or, using the other formula,

we can calculate the standard deviation, again.

•
$$\sigma_{\chi}^{2} = [(0)^{2} \cdot (\frac{1}{4}) + (1)^{2} \cdot (\frac{1}{2}) + (2)^{2} \cdot (\frac{1}{4})] - (1)^{2}$$

 $= [\frac{1}{2} + 1] - 1$
 $= \frac{1}{2}$
• $\sigma_{\chi} = \int (\frac{1}{2}) \approx 0.707$ Heads

Variance and Standard Deviation for a Discrete Random Variable

- Note: The second formula,
 - $\sigma_X^2 = Var(X) = \sum [x^2 \cdot P(X = x)] (\mu_X)^2$ is easier/quicker to use than the first,
 - $\sigma_X^2 = Var(X) = \sum [(x \mu_X)^2 \cdot P(X = x)]$ However, it does not matter which one we use.

Variance and Standard Deviation for a Discrete Random Variable

Note: The second formula,

 $\sigma_X^2 = Var(X) = \sum [x^2 \cdot P(X = x)] - (\mu_X)^2$

is easier/quicker to use than the first,

 $\sigma_X^2 = Var(X) = \sum [(x - \mu_X)^2 \cdot P(X = x)]$ However, it does not matter which one we use.

It is your choice.