A - Future Amount; Future Value; Accumulated Amount
P - Principal; Present Value
I - Interest; Amount of Interest Earned or Paid
R - Amount of Periodic Payment; Amount of Periodic Deposit; Amount of Recurring Periodic Payment or Deposit
r - Interest Rate
r_{A} - Effective Rate; Effective Annual Yield; Annual Percentage Yield (APY)
t - Amount of Time, in years; Duration, in years, for Investment/Loan
n - Number of times Interest is compounded each year; Frequency with which Interest is compounded each year; Number of times Interest is paid/charged each year; Frequency with which Interest is paid/charged each year.

- Future Value

$$
A=P+I
$$

- Principal
$P=A-I$
- Future Value for Simple Interest

$$
A=P(1+r t)
$$

$$
\mathrm{I}=\mathrm{Prt}
$$

- Present Value for Simple Interest

$$
\mathrm{P}=\frac{\mathrm{A}}{1+\mathrm{rt}}
$$

- Effective Rate; Effective Annual Yield; Annual Percentage Yield (APY)

$$
r_{A}=\left(1+\frac{r}{n}\right)^{n}-1
$$

- Future Value for Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

- Future Value for Continuous Compounding

$$
\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}
$$

- Present Value for Compound Interest

$$
P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}}
$$

- Periodic Deposit for an Annuity

$$
R=\frac{A\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}
$$

- Periodic Payment for Amortization (a.k.a. Periodic Payment for a Loan)

$$
R=\frac{P\left(\frac{r}{n}\right)}{\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}
$$

- Future Value for an Annuity (a.k.a. Savings Plan)

$$
A=\frac{R\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{n}\right)}
$$

- Principal for Amortization
$P=\frac{R\left[1-\left(1+\frac{r}{n}\right)^{-n t}\right]}{\left(\frac{r}{n}\right)}$
- Interest

$$
\mathrm{I}=\mathrm{A}-\mathrm{P}
$$

