It's Not Hyperbole: A Transforming Proof

Thomas Q. Sibley St. John's University College of St. Benedict tsibley@csbsju.edu

Topics in Geometry Course

- Euclidean Geometry, Axiomatics
- Non-Euclidean Geometry
- Transformational Geometry, Symmetry
- Survey of Projective Geometry

Models of Hyperbolic Geometry

- Poincaré Model

Klein Model

Plane Transformations

- 2×2 matrices fix origin.
- Use plane $z=1$ in \mathbf{R}^{3}. Points are $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$ and
transformations are $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & 1\end{array}\right]$.

Spherical Isometries

- A 3×3 matrix M is a spherical isometry iff it is orthogonal. That is, $\mathrm{M}^{\top}=\mathrm{M}^{-1}$ or its columns are mutually orthogonal and have length 1:
- For columns $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3}, $M_{j} \cdot M_{k}=0$ if $j \neq k$ and $M_{j} \cdot M_{j}=1$.

Projective Geometry

Analytic Projective Geometry Homogeneous Coordinates

- Points: 3×1 column vectors.
- Lines: 1×3 vectors. P is on k iff $k \cdot P=0$.
- Conics: 3×3 symmetric, nonsingular matrices. P is on C iff $\mathrm{P}^{\top} \cdot \mathrm{C} \cdot \mathrm{P}=0$.
- Representations of points (lines, conics) are equivalent if they differ by a nonzero scalar.
- Unit circle has equation $x^{2}+y^{2}-z^{2}=0$ or $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0$.
- Note: Not quite dot product of the point with itself.

Collineations

(Projective Transformations)

- A collineation is a nonsingular $3 x 3$ matrix.
- M leaves point P fixed iff $M P=\lambda P$.

Collineations

(Projective Transformations)

- A collineation is a nonsingular 3×3 matrix.
- M leaves point P fixed iff $M P=\lambda P$.
- M takes line k to kM^{-1} because $\left(k M^{-1}\right)(M P)=k P$ so the image of P is on image of k iff P is on k.
- M leaves line k stable iff $\mathrm{kM}^{-1}=\lambda k$.

Collineations

(Projective Transformations)

- A collineation is nonsingular 3×3 matrix.
- M leaves conic C stable iff
$\left(M^{-1}\right)^{\top} C\left(M^{-1}\right)=\lambda C$.
- Lemma. The set of collineations leaving a conic stable forms a group under composition.

Hyperbolic Isometries for Klein Model

- Definition. A collineation is a hyperbolic isometry iff it leaves the unit circle stable.

Hyperbolic "Translation"

- Definition. The hyperbolic inner product of two column vectors $\mathrm{P}=\left[\begin{array}{l}S \\ t \\ u\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is $\mathrm{P} \cdot{ }_{h} \mathrm{Q}=s x+t y-u z$.
- Note: This is not an inner product for linear algebra.
- Theorem. A collineation with columns M_{1}, M_{2} and M_{3} is a hyperbolic isometry iff $M_{j} \cdot{ }_{h} M_{k}=0$ if $j \neq k$ and $M_{1} \cdot{ }_{h} M_{1}=M_{2} \cdot h M_{2}=-\left(M_{3} \cdot h M_{3}\right)$.
- Compare: Spherical isometry iff $M_{j} \cdot M_{k}=0$ if $j \neq k$ and $M_{j} \cdot M_{j}=1$.
- Theorem. A collineation with columns M_{1}, M_{2} and M_{3} is a hyperbolic isometry iff $M_{j} \cdot{ }_{h} M_{k}=0$ if $j \neq k$ and $M_{1} \cdot{ }_{h} M_{1}=M_{2} \cdot h M_{2}=-\left(M_{3} \cdot h M_{3}\right)$.
$\cdot\left[\begin{array}{ccc}1 & 0 & x \\ 0 & \sqrt{1-x^{2}} & 0 \\ x & 0 & 1\end{array}\right]$
- Proof. Let M be a collineation.

For $C=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$ to be stable we must have $\left(\mathrm{M}^{-1}\right)^{\top} \mathrm{C}\left(\mathrm{M}^{-1}\right)=\lambda C$. Let the columns of M^{-1} be X, Y and Z. Then $\left(\mathrm{M}^{-1}\right)^{\top} C\left(\mathrm{M}^{-1}\right)=$

- Then $\left(\mathrm{M}^{-1}\right)^{\top} \mathrm{C}\left(\mathrm{M}^{-1}\right)=$

$$
\begin{aligned}
& {\left[\begin{array}{l}
X^{T} \\
Y^{T} \\
Z^{T}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
X \cdot{ }_{h} X & X \cdot{ }_{h} Y & X \cdot{ }_{h} Z
\end{array}\right]} \\
& Y \cdot{ }_{h} X \\
& Y \cdot{ }_{h} Y \quad Y \cdot{ }_{h} Z . \\
& {\left[Z \cdot{ }_{h} X \quad Z \cdot{ }_{h} Y \quad Z \cdot{ }_{h} Z\right]}
\end{aligned}
$$

- Then $\left(\mathrm{M}^{-1}\right)^{\top} \mathrm{C}\left(\mathrm{M}^{-1}\right)=\lambda \mathrm{C}$ iff

$$
\left[\begin{array}{lll}
X \cdot{ }_{h} X & X \cdot{ }_{h} Y & X \cdot{ }_{h} Z \\
Y \cdot{ }_{h} X & Y \cdot{ }_{h} Y & Y \cdot{ }_{h} Z \\
Z \cdot{ }_{h} X & Z \cdot{ }_{h} Y & Z \cdot{ }_{h} Z
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right]
$$

- That is, the hyperbolic inner products of different columns are all 0 and $X \cdot{ }_{h} \mathrm{X}=\mathrm{Y} \cdot{ }_{h} \mathrm{Y}=-\mathrm{Z} \cdot{ }_{h} \mathrm{Z}$.
- Thus M leaves C stable iff M^{-1} is a hyperbolic isometry.
- The collineations leaving C stable are a group, so M leaves C stable iff M is a hyperbolic isometry.
Q. E. D.

Theory of Special Relativity and Hyperbolic Isometries

- Additivity of velocities corresponds to compositions of hyperbolic translations.
- Minkowski geometry is a subgeometry of four-dimensional projective geometry. Lorentz transformations leave invariant the quantity $\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-\Delta t^{2}$.

