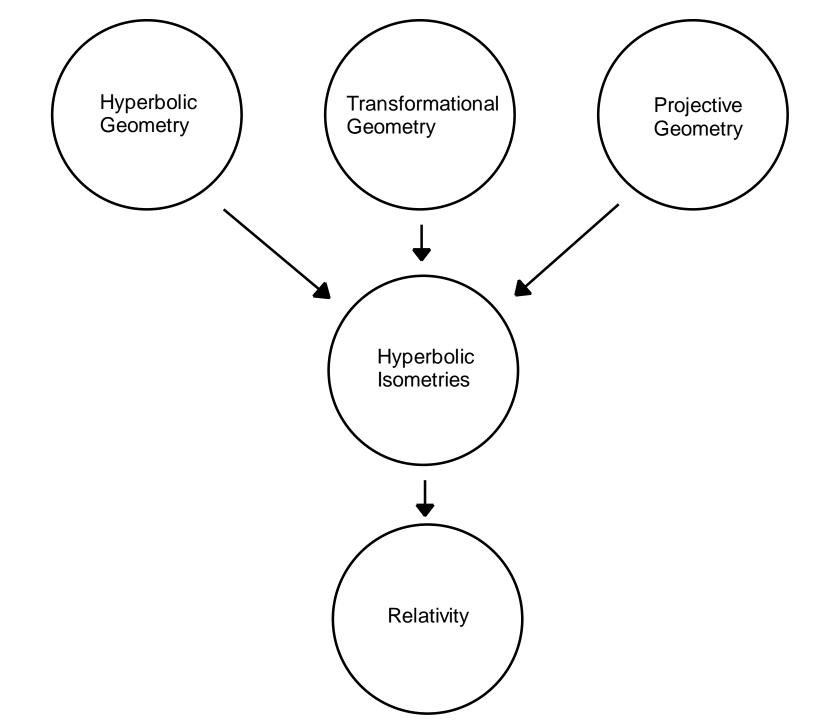
It's Not Hyperbole: A Transforming Proof

Thomas Q. Sibley St. John's University College of St. Benedict tsibley@csbsju.edu

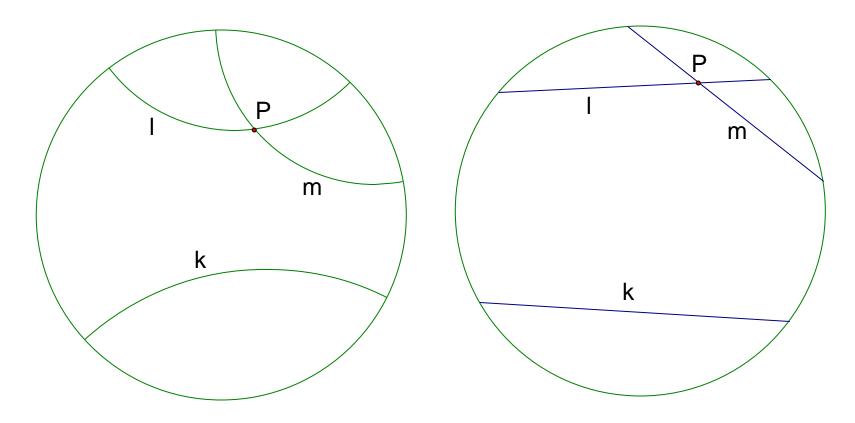


Topics in Geometry Course

- Euclidean Geometry, Axiomatics
- Non-Euclidean Geometry
- Transformational Geometry, Symmetry
- Survey of Projective Geometry

Models of Hyperbolic Geometry

Poincaré Model
 Klein Model



Plane Transformations

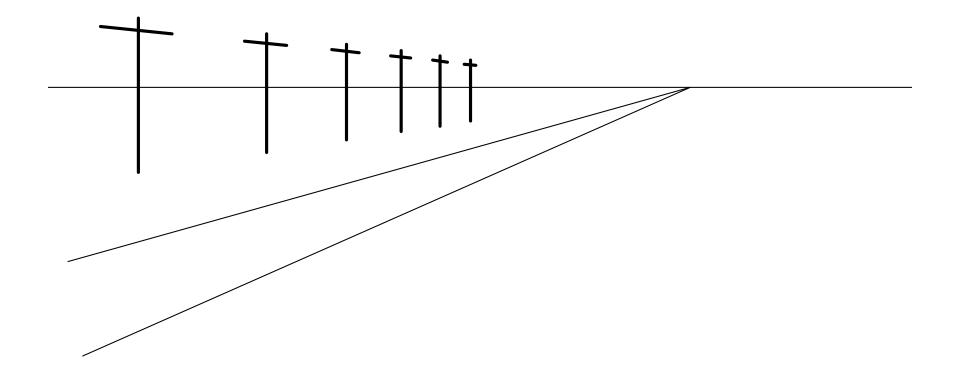
• 2x2 matrices fix origin.

• Use plane z = 1 in \mathbb{R}^3 . Points are $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ and transformations are $\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$.

Spherical Isometries

- A 3x3 matrix M is a spherical isometry iff it is orthogonal. That is, M^T = M⁻¹ or its columns are mutually orthogonal and have length 1:
- For columns M_1 , M_2 and M_3 , $M_j \cdot M_k = 0$ if $j \neq k$ and $M_j \cdot M_j = 1$.

Projective Geometry



Analytic Projective Geometry Homogeneous Coordinates

- Points: 3x1 column vectors.
- Lines: 1x3 vectors. P is on k iff $k \cdot P = 0$.
- Conics: 3x3 symmetric, nonsingular matrices. P is on C iff $P^T \cdot C \cdot P = 0$.
- Representations of points (lines, conics) are equivalent if they differ by a nonzero scalar.

- Unit circle has equation $x^2 + y^2 z^2 = 0$ or $\begin{bmatrix} x \ y \ z \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0.$
- Note: Not quite dot product of the point with itself.

Collineations (Projective Transformations)

- A collineation is a nonsingular 3x3 matrix.
- M leaves point P fixed iff MP = λ P.

Collineations (Projective Transformations)

- A collineation is a nonsingular 3x3 matrix.
- M leaves point P fixed iff MP = λ P.
- M takes line k to kM⁻¹
 because (kM⁻¹)(MP) = kP so the image of P is on image of k iff P is on k.
- M leaves line k stable iff $kM^{-1} = \lambda k$.

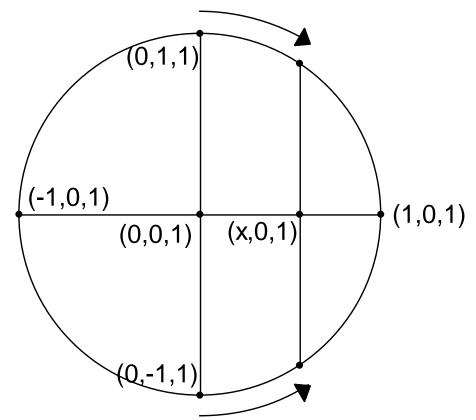
Collineations (Projective Transformations)

- A collineation is nonsingular 3x3 matrix.
- M leaves conic C stable iff (M⁻¹)^TC(M⁻¹) = λC.

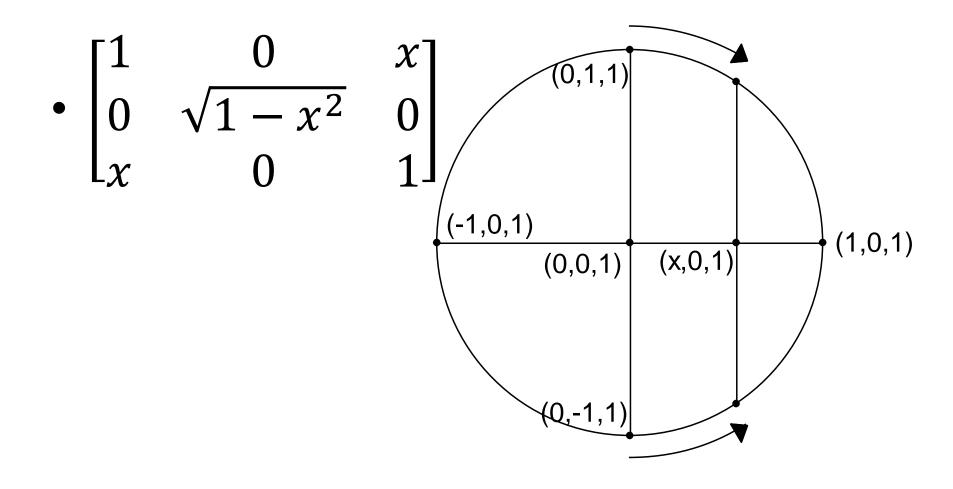
 Lemma. The set of collineations leaving a conic stable forms a group under composition.

Hyperbolic Isometries for Klein Model

• Definition. A collineation is a *hyperbolic isometry* iff it leaves the unit circle stable.



Hyperbolic "Translation"



• Definition. The hyperbolic inner product of two column vectors $P = \begin{bmatrix} S \\ t \\ u \end{bmatrix}$ and $Q = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

is
$$P \cdot_h Q = sx + ty - uz$$
.

• Note: This is not an inner product for linear algebra.

• Theorem. A collineation with columns M_1 , M_2 and M_3 is a hyperbolic isometry iff $M_j \cdot_h M_k = 0$ if $j \neq k$ and $M_1 \cdot_h M_1 = M_2 \cdot_h M_2 = -(M_3 \cdot_h M_3).$

• Compare: Spherical isometry iff $M_j \cdot M_k = 0$ if $j \neq k$ and $M_j \cdot M_j = 1$. • Theorem. A collineation with columns M_1 , M_2 and M_3 is a hyperbolic isometry iff $M_j \cdot_h M_k = 0$ if $j \neq k$ and $M_1 \cdot_h M_1 = M_2 \cdot_h M_2 = -(M_3 \cdot_h M_3).$

$$\begin{bmatrix} 1 & 0 & x \\ 0 & \sqrt{1 - x^2} & 0 \\ x & 0 & 1 \end{bmatrix}$$

 Proof. Let M be a collineation. For C = $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$ to be stable we must have $(M^{-1})^T C(M^{-1}) = \lambda C$. Let the columns of M⁻¹ be X, Y and Z. Then $(M^{-1})^{T}C(M^{-1}) =$

• Then $(M^{-1})^{T}C(M^{-1}) =$ $\begin{bmatrix} X^T \\ Y^T \\ Z^T \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} X & Y & Z \end{bmatrix} =$ $\begin{bmatrix} \overline{X} \cdot_h X & \overline{X} \cdot_h Y & \overline{X} \cdot_h Z \\ Y \cdot_h X & Y \cdot_h Y & Y \cdot_h Z \\ Z \cdot_h X & Z \cdot_h Y & Z \cdot_h Z \end{bmatrix}.$

• Then $(M^{-1})^{T}C(M^{-1}) = \lambda C$ iff $\begin{bmatrix} X \cdot_h X & X \cdot_h Y & X \cdot_h Z \\ Y \cdot_h X & Y \cdot_h Y & Y \cdot_h Z \\ Z \cdot_h X & Z \cdot_h Y & Z \cdot_h Z \end{bmatrix} =$ $\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda \end{bmatrix}.$

- That is, the hyperbolic inner products of different columns are all 0 and
 X ⋅_h X = Y ⋅_h Y = − Z ⋅_h Z.
- Thus M leaves C stable iff M⁻¹ is a hyperbolic isometry.
- The collineations leaving C stable are a group, so M leaves C stable iff M is a hyperbolic isometry.
 Q. E. D.

Theory of Special Relativity and Hyperbolic Isometries

Additivity of velocities corresponds to compositions of hyperbolic translations.

• Minkowski geometry is a subgeometry of four-dimensional projective geometry. Lorentz transformations leave invariant the quantity $\Delta x^2 + \Delta y^2 + \Delta z^2 - \Delta t^2$.